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Self-Organization and the Evolution of Forms
In the Living World In the Artificial World

cells

In the Inorganic World
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molecules pixels



Tissue Engineering 
(Abellan Lopez et al., 2023)

Origins of Life 
(Grizou et al., 2020)

Emergence of Agency 
(Hamon et al., 2022)

pixels

Discovery of Novel Self-Organized Structures
In Biology In ALife and AIIn Physics and Chemistry

cellsmolecules

AI AIAI

Rule parameters
Initial state
etc.

Cell types
Biomaterial composition
etc.

Temperature
Chemical composition
etc.
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For i = 1 … N:

Automated Discovery of Self-Organized Structures
How to make interesting discoveries in a sample-efficient manner?

θ1 o1 W1

θ2 o2 W2

θN oN WN

…… …

database of 
discoveries

learned 
representations

≪standard AI 
training budget
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Temperature, Chemical composition, …

Raw visual state, ….



Automated Discovery of Self-Organized Structures

Diversity-driven Search

Aim: construct a map of possible outcomes

Hypothesis: behavioral characterization

Approach: novelty search, intrinsically 
motivated goal exploration process

Aim: optimization toward target

Hypothesis: reward function

Approach: evolutionary algorithms, 
gradient descent, bayesian optimization

Optimization-driven Search

How to make interesting discoveries in a sample-efficient manner?

Knowledge-driven Search

Aim: learn a predictive model

Hypothesis: base model architecture

Approach: active learning (prediction error, 
max information gain, etc.)

→ sparse and deceptive reward problem → cold start and skewed data problems 5



Automated Discovery of Self-Organized Structures
How to make interesting discoveries in a sample-efficient manner?
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Diversity-driven Search

Aim: construct a map of possible outcomes

Hypothesis: behavioral characterization

Approach: novelty search, intrinsically 
motivated goal exploration process



Automated Discovery of Self-Organized Structures

“Curious” child during exploratory play

Humans acquire open-ended repertoire of skills throughout 
their lifetimes despite constraints in time and energy

crawl

object 
interaction

tool use

walk

mathematics

language

How to make interesting discoveries in a sample-efficient manner?

Credits: Francis Vachon
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Developmental AI

http://www.youtube.com/watch?v=8vNxjwt2AqY&t=15


Automated Discovery of Self-Organized Structures

Developmental sciences

intrinsic 
motivations

autotelic 
learning

Autotelic learning: auto (self) + telos (goal)
Autotelic agents are intrinsically motivated to 
learn to represent, generate, pursue and master 
their own goals.

Intrinsic motivations: 
Set of brain processes that motivate humans to 
explore for the mere purpose of experiencing 
novelty, suprise or learning progres

Humans acquire open-ended repertoire of skills throughout 
their lifetimes despite constraints in time and energy

How to make interesting discoveries in a sample-efficient manner?

Credits: Marie Spenale
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Developmental AI



Automated Discovery of Self-Organized Structures

Developmental sciences Developmental AI
computational models

AI toolbox

intrinsic 
motivations

autotelic 
learning

How to make interesting discoveries in a sample-efficient manner?

Credits: Marie Spenale (Forestier et al., 2022) 9

http://www.youtube.com/watch?v=Kw724djJpUs&t=120


Automated Discovery of Self-Organized Structures

Developmental sciences Developmental AI
computational models

AI toolbox

Assist Scientific Discovery

“Curious” 
Discovery 
Assistant

intrinsic 
motivations

autotelic 
learning

How to make interesting discoveries in a sample-efficient manner?

Credits: Marie Spenale
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Outline

I.   The “Curious Discovery Assistant” Framework II.   Use Cases of the Curious Discovery Assistant

Use Case #2

Competencies in Biological 
Network Models

Use Case #1

Sensorimotor Agency in 
Continuous CA

BACKGROUND

Computational Framework
IMGEP

Testbed Environment
Lenia

Conceptual contribution

Meta-Diversity Search

Computational study 

IMGEP-HOLMES

PERSPECTIVES

Use Case #3 
Bioprinter-controlled System

Towards Open-Ended 
Discovery Assistants
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Part 1: The Curious 
Discovery Assistant 
Framework
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IMGEP: Intrinsically Motivated Goal Exploration Process
Forestier, et al., “Intrinsically Motivated Goal Exploration Processes with Automatic Curriculum Learning”, JMLR (2022)

goal

policy

reached 
trajectory
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IMGEP: Intrinsically Motivated Goal Exploration Process
Grizou, et al., “A curious formulation robot enables the discovery of a novel protocell behavior”, Science (2020)

characterization

parameters θ
goal

[avg droplet number, 
avg droplet speed]
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Diversity Search

IMGEP: Intrinsically Motivated Goal Exploration Process

Diverse “life-like” behaviors:
- Movement
- Grouping
- Division
- Fusion
- Chemotaxis
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Grizou, et al., “A curious formulation robot enables the discovery of a novel protocell behavior”, Science (2020)

http://www.youtube.com/watch?v=RC_nc0P_crc&t=43


predefined outcome 
characterization

IMGEP: Intrinsically Motivated Goal Exploration Process

characterization

parameters θ
goal

[avg droplet number, 
avg droplet speed]

predefined goal 
sampling strategy

low-dimensional 
parameter space (4d)
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Grizou, et al., “A curious formulation robot enables the discovery of a novel protocell behavior”, Science (2020)
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Lenia: Testbed Environment
● Generalized version of Conway’s Game of Life (Chan 2019, Chan 2020)



Lenia: Testbed Environment
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● Class of continuous CA where each instance is defined by some parameters that condition the CA “physics”

Parameters

continuous time

continuous states

continuous space
continuous updates

● Generalized version of Conway’s Game of Life (Chan 2019, Chan 2020)



Lenia: Testbed Environment

● Can generate a wide range of complex structures 
(unbounded emergence)

● Interesting life-like properties
○ spatially localized, symmetries 
○ Individuality, diverse locomotion

→ computer-based yet rich testbed for automated discovery
19

● Constructing a map of the possible outcomes 
poses various exploration challenge

○ complex system mapping
○ raw visual states



Meta Diversity 
Search

Conceptual Contribution

20



● Unsupervised learned features

→ automatically learn encoder representation with VAE

→ requires  pre-collected set of observations 

How to define the representation space?

Diversity Search

● Engineered features

→ prior expertise on “interesting” high-level descriptors

21

● Online learned features 

→ online learning of encoder representation with VAE 

“Intrinsically Motivated Exploration for Automated Discovery of Patterns in 
Morphogenetic Systems”, Chris Reinke, Mayalen Etcheverry, Pierre-Yves Oudeyer.  
ICLR 2020 (Oral)



● Unsupervised learned features (IMGEP-PGL)
→ automatically learn encoder representation with VAE

→ fixed representation + requires pre-collected set of observations 

How to define the  representation space?

● Engineered features  (IMGEP-HGS)
→ prior expertise on “interesting” high-level descriptors
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RANDOM

TLP
57%

SLP
8%

dead
35%

IMGEP-OGL

dead
20%

TLP
48%

SLP
32%

● Online learned features (IMGEP-OGL) 
→ online learning of encoder representation with VAE 

“Intrinsically Motivated Exploration for Automated Discovery of Patterns in 
Morphogenetic Systems”, Chris Reinke, Mayalen Etcheverry, Pierre-Yves Oudeyer.  
ICLR 2020 (Oral)



Limits of monolithic representations

→ unlikely to be aligned with what a final end-user is considering as “interesting” 23



Meta-Diversity Search 

Outer loop: continually learns diverse 
representation spaces to characterize behaviors

Inner loop: searches for a maximally diverse set 
of patterns in each characterization space

→  steer the search toward end-user preferences

External 
evaluator

24

Discovery 
assistant

1)  How to learn diverse representation spaces?

2)  How to efficiently find diverse patterns in the 
learned spaces?

3)  How to quickly adapt the search toward 
initially-unknown preferences of human end-user?



IMGEP-HOLMES

Computational Study
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“Hierarchically Organized Latent Modules for Exploratory 
Search in Morphogenetic Systems”, Mayalen Etcheverry, 
Clément Moulin-Frier, Pierre-Yves Oudeyer
NeurIPS 2020 (Oral)



● Base module embedding neural network → VAE

● Split trigger → reconstruction loss plateau

Hierarchically Organized Latent Modules for Exploratory Search (HOLMES)
⤷ dynamic and modular architecture actively expanded to represent the different niches 

R0 reconstruction loss

saturation 

HOLMES: Learning Diverse Representation Spaces
1) How to learn diverse representation spaces?

26



Hierarchically Organized Latent Modules for Exploratory Search (HOLMES)
⤷ dynamic and modular architecture actively expanded to represent the different niches 

● Base module embedding neural network → VAE

● Split trigger → reconstruction loss plateau

● Clustering in the latent space → K-Means

● Parent-child transfer → lateral connections

HOLMES: Learning Diverse Representation Spaces
1) How to learn diverse representation spaces?
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B0 

saturation 

R00 reconstruction loss

R01 reconstruction loss



B00 
● Base module embedding neural network → VAE

● Split trigger → reconstruction loss plateau

Hierarchically Organized Latent Modules for Exploratory Search (HOLMES)
⤷ dynamic and modular architecture actively expanded to represent the different niches 

HOLMES: Learning Diverse Representation Spaces
1) How to learn diverse representation spaces?
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B0 

→ progressively deeper hierarchy of diverse representations

● Clustering in the latent space → K-Means

● Parent-child transfer → lateral connections
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IMGEP-HOLMES: Diversity Search in Learned Spaces
  2)   How to efficiently find diverse patterns in each representation space?



Results  Learning to explore diverse niches of patterns
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Preference-guided IMGEP-HOLMES: Adapting to User
  3)   How to quickly adapt the search to the end-user preferences?



Results

→ We use the classifiers to simulate an external user that would prefer either SLPs or TLPs, and investigate how 
IMGEP-HOLMES search can be guided to specialize toward a diversity of either SLPs or TLPs. 

Spatially-Localized Patterns (SLPs) Turing-like Patterns (TLPs)

32



Results   Learning to efficiently adapt the search

Guided toward SLPs

→ Very sparse feedback: a total of 11 user interventions (one per split) with an 
average of 6 “clicks” (scores) to provide

Guided toward TLPs

33



Quantitative evaluation: How to define the analytic behavior space?

→ IMGEP-VAE finds a high diversity of SLPs 
but a poor diversity of TLPs. 

→ When non-guided, IMGEP-HOLMES finds 
a higher diversity than Random Exploration 
both for SLPs and TLPs. 

→ When guided, IMGEP-HOLMES can 
further increase the discovered diversity in 
the category of interest.

Results   Learning to efficiently adapt the search

34



Part I Takeaways

● Novel objective of meta-diversity search 

● Dynamic and modular architecture for unsupervised learning of diverse representations

● Integrated with intrinsically-motivated goal exploration processes, enables efficient
guidance toward the preferences of a simulated end-user, using very little user feedback

35



Part 2: Use Cases of 
the Curious 
Discovery Assistant

36



Use Case #1
Studying the emergence of robust 
forms of “sensorimotor agency” in 
continuous CA models

Collaboration: Gautier Hamon 
(INRIA), Bert Chan (Google Brain)

Sensorimotor 
Lenia

37

“Learning Sensorimotor Agency in Cellular Automata”, 
Gautier Hamon, Mayalen Etcheverry, Bert Chan, Clément 
Moulin-Frier, Pierre-Yves Oudeyer (In Submission)



Studying of sensorimotor agency in continuous CA

→ Already assume the existence of agents with 
predefined body, brain, sensors and actuators 

→ Only environment with low-level elements and physical 
laws, no prior notion of agency, body, sensors, or actuators.

38

How to find environmental rules leading to the emergence of 
autopoietic entities with sensorimotor abilities?

→ tedious and hard to find → fragile to perturbations

coherent entity able to 
robustly perform a variety 
of behaviors that involve 

the process of sensing and 
acting in the environment

cells

→ How do “agency” and “embodiment” arise from 
collective of cells and distributed low-level rules?



● A tailored curiosity search is able to find environmental 
rules leading to the self-organization of individuality, 
locomotion and sensorimotor abilities

39

Discovery of rules leading to sensorimotor agency

● Very hard to obtain with 
○ random search (≃0.03% of moving agents)

○ moving agents found “by hand” are not robust 
to the introduced obstacle perturbations

https://docs.google.com/file/d/1lEXVccFMBekI7EcnsnDYCfXhRqjDnO-W/preview
https://docs.google.com/file/d/1vkIydJVjL0xHJmdwpTG4Ry8fbqMkFKmL/preview


Robustness to novel perturbations

40

“Organic” perturbations

change of initialization

stochastic cell updates

change of scale

“Intersubjective” perturbations

Reproduction

Individuality

Attraction

“Environmental” perturbations

harder obstacles

moving obstacles

novel attractive element



Use case 1 Takeaways
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● Curiosity search enabled the discovery 
of diverse forms  of “sensorimotor 
agents” in Lenia
→ shows how a collective of simple identical 
cells can make “decision” and “sense” at the 
macro scale through local interactions only

● The discovered agents showed 
surprisingly robust capabilities to 
move and maintain their body integrity 
despite several hard perturbations
→ reminiscent of generalization capabilities 
observed in biological organisms



Use Case #2
Revealing Diverse Behavioral 
Competencies in Gene Regulatory 
Networks via Minimal Interventions

Collaboration: Michael Levin (Tufts 
University)

Biological Network 
Competencies

42

“AI-driven Automated Discovery Tools Reveal Diverse 
Behavioral Competencies of Biological Networks”, 
Mayalen Etcheverry, Clément Moulin-Frier, Pierre-Yves 
Oudeyer, Michael Levin (In Submission)

Intervention Space

Behavior Space

init 
state

constrains 
state space

parameters

(CA grid space)

walls

pushes

noise

GRN

(Transcriptional Space)



Navigation Competencies of Unconventional Agents

Lenia 
Rules

Intervention Space

Behavior Space

init 
state

constrains 
state space

parameters

(CA grid space)

Cell 
physics

(Morphospace)

● Lenia creatures as “agents” navigating cellular 
automata grid space with robust competencies

● Biological systems as “agents” navigating their 
own problem spaces with robust competencies

obstacles

alterations

noise

43

○ Cellular collectives as “agents” acting in 
morphological space

goal state

○ Subcellular systems (biomolecular pathways) 
as “agents” acting in transcriptional space

○ etc 

multiscale 
competency 
architecture

(Levin, 2022)
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gene 
2

gene 
1

gene 
3

gene 
6

gene 
5

gene 
4

protein 1

protein 4

Cell 
phenotype

gene 1 gene 4

protein 2

inhibit

GRNs: Gene Regulatory Networks



● GRN models curated by biologists available on online database

ST
EP
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EP

 2
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EP
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ODE 
equations

gene 
2

gene 
1

gene 
3

gene 
6

gene 
5

gene 
4

GRNs: Gene Regulatory Networks

initial state (t=0)

controllable parameters 𝜃 observations o

final state (t=500)

gene 
2

gene 
1

gene 
3

gene 
6

gene 
5

gene 
4

phenotype 
nodes

● Simulations with interventions in JAX goal state = attractor in 
transcriptional space

gene 1
expression level

gene 4
expression level

45

SBMLtoODEjax



Navigation Competencies of Biomolecular Networks
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Hypothesis: Biomolecular networks (GRNs) can be seen as “agents” navigating transcriptional space 
toward “goal states” with varying degrees of “competencies” (Fields and Levin, 2022)

Versatility = GRN's  capacity to reach diverse goal states under minimal interventions

 Approach: Curiosity search to find the range of possible goal states (attractors)

Discoveries by curiosity search (blue) and random search (pink)

Discovered diversity on 432 systems

→ Discovered diversity suggests that (some) GRNs can reach a broad spectrum of steady states
(which would have been very long to discover with a simple random search)



Navigation Competencies of Biomolecular Networks

47

Robustness = GRN's  capacity to reach a goal states despite various perturbations

 Approach: Battery of empirical tests to assess the robustness of discovered goal states

→ Discovered various complex yet highly robust space-traversal strategies in transcriptional space 
(reminiscent of navigation competencies of living “agents” operating in other “spaces”)

Robust to Noise Robust to Pushes Robust to Walls

Hypothesis: Biomolecular networks (GRNs) can be seen as “agents” navigating transcriptional space 
toward “goal states” with varying degrees of “competencies” (Fields and Levin, 2022)



Design of therapeutic interventionsGRNs associated to development of diseases

Reuses for BioMedicine
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gene 
2

gene 
1

gene 
3

gene 
6

gene 
5

gene 
4

protein 1

protein 4

Cell 
phenotype

gene 1 gene 4

protein 2

inhibit

drug intervention

healthy states

cancerous states

RKIP-ERK signalling pathway (Kwang-Hyun et al., 2003)

RKIP
expression level

ERK
expression level



Synthetic Gene Circuit Engineering

49

Reuses for BioEngineering

Transcriptional Space

Synthetic GRN

parameters ??

Target 
Functionality

→ stuck in local optima

● Standard optimization problem

TARGET SGD

● Alternative diversity search strategy

IMGEP

● Refined solution with local optimization

SGD

→ close to target



Use case 2 Takeaways

● Curiosity search enables to efficiently map the space of behaviors of biological networks 

● Some biomolecular networks showed surprisingly robust navigation competencies

● Several possible reuses for specific problems in biomedicine and bioengineering

50



Conclusion and 
Next Steps

51



Conclusion

● Curiosity-driven exploration algorithm provides an efficient 
framework to explore and map the space of possible 
outcomes of complex self-organizing systems

● Many possible algorithmic developments can be envisaged 
to build more open-ended forms of discovery assistants

○ Two contributions: Meta-Diversity Search and Human Guidance

● Step closer toward having digital discovery assistants for 
assisting scientific discovery in complex systems

○ Two use-cases in continuous CA models and biological network models

52

“Curious” 
Discovery Assistant



Experiments in a bioprinter-controlled biological system

Intervention Space

Behavior Space

init 
state

precise cell 
positioning (t=0)

parameters

Cell 
physics

(Tissue Maturation)

bioprinted human 
skin models

Next Steps
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Campaign #3: Diversity search to find  
diverse tubular epithelial structures

Campaign #1: Diversity search to find 
diverse cell layer orientations

Campaign #2: Diversity search to find  
diverse derm surface topographies

small budget: 102 < N < 103



Meta-Diversity Search and Human Guidance as a toolbox to conceptualize Open-Endedness 

Several algorithmic perspectives:

● Towards a richer diversity of goals

● Towards richer interactions with (real) humans

● To be deployed to other systems

Perspectives

54



Perspectives
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For the design of novel forms of collective intelligences

TLPs SLPs sensorimotor agents
(Hamon et al., 2022) 

memory? learning? open-ended evolution?competition?

“Flow-Lenia: Towards open-ended evolution in cellular automata through mass conservation 
and parameter localization”, Erwan Plantec, Gautier Hamon, Mayalen Etcheverry, Pierre-Yves 
Oudeyer, Clément Moulin-Frier, Bert Chan.  ALife 2023 (Best Paper Award)

Bioelectric patterns
(Pietak and Levin., 2016) 

Xenobots
(Kriegman et al., 2020) 

Active Materials
(Soni et al., 2019) 
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