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Abstract

When training models for medical imaging tasks such as image registration, volu-
metric organ segmentation, lesion quantification and abnormality detection, prior
localization of the target anatomy is an important prerequisite to enhance consis-
tency in the local context. Using deep reinforcement learning, we demonstrate a
novel method to actively learn how to localize an object in the volumetric scene.
We show the applicability of our method by localizing boxes (9 degrees of freedom)
on a set of acquired MRI scans of the brain region.

1 Context

Automatic localization of anatomical structures in the context of 3D data can be approached using
several types of method such as atlas-based registration methods [Ranjan (2011)], regression-based
methods [Criminisi et al. (2013); Cuingnet et al. (2012)] or classification-based methods [Zheng et al.
(2009); Ghesu et al. (2016)]. More recently, Akselrod-Ballin et al. (2016) proposed to apply the Faster
R-CNN technique developped by Ren et al. (2015) to medical imaging analysis. Object classification
and object localization is jointly performed in a single forward pass to decrease the processing time.
We propose a novel method to automatically estimate the 9 parameters (position, rotation and scale)
of an anatomical bounding box. Unlike previous methods where the search is performed onto a set of
independent object proposals, we propose an active search strategy to learn the optimal convergence
path. We build upon the work of Ghesu et al. (2017) that uses reinforcement learning to identify
the location of anatomical landmarks in a set of image data. We extend the decision-based search
strategy framework, limited to finding a set of coordinates (x,y,z), to a wider range of image analysis
applications by expanding the search space to a nonlinear multi-dimensional parametric space.

2 Method

The sought object is modeled with a set of D independent parameters {xi}Di=1. An intelligent agent
is deployed into the D-dimensional parametric space and can navigate, through a sequence of simple
control actions, with the goal of reaching the optimal parameter vector x∗ = (x∗1, . . . , x

∗
D).

2.1 Autonoumous learning of the control strategy through deep reinforcement learning

We model the problem as a Markov Decision Process (MDP). At each time step t, the agent ob-
serves the content of the currently attended volume region. We resample it to match a fixed-

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



Figure 1: Schematic illustration of the proposed control strategy. Measurement from the image (state)
drive the output of the deep-Q-network which itself drive the agent decisions. In the proposed MDP,
the agent follows a multi-scale progressive control strategy and adjusts the box 9 degrees of freedom.

size grid of voxels that we use as input state st of the network. In return, the agent selects
an action at to either modify the current object geometry xt (by adjusting one of the D pa-
rameters by ±1 in the discretized space) or to terminate the search with the stop action. Ac-
cordingly to the consequences of its action, the agent receives a dense signal reward rt =
dist(xt, x

∗)− dist(xt+1, x
∗) if at modifies the object geometry(

dist(xt,x
∗)−dmin

dmax−dmin
− 0.5

)
∗ 6 if at is the stop action

−1 if xt+1 not legal
where dist defines a metric distance in the parametric space and x∗ is the annotated ground-truth
parameter set. Intuitively, the reward is positive when the agent gets closer to the ground truth target
and negative otherwise. If an action leads to a non-legal set of parameters (outside of a predefined
allowed search range), the agent receives a negative reward -1. If the agent decides to stop, the closer
it is from the target the greater reward it gets and reversely.

We use a deep Q-network (DQN), as introduced by Mnih et al. (2013), to estimate the optimal action-
value: Q∗(s, a) ≈ Q(s, a, θ). The training uses Q-learning to update the network by minimizing
a sequence of loss functions Li(θi) expressing how far Q(s, a; θi) is from its target yi: Li(θi) =

Es,a,r,s′ (yi −Q(s, a; θi))
2. For effective training of the DQN, the proposed concepts of experience

replay, ε-greedy exploration and loss clipping are incorporated. The exploration is constrained to
actions leading to positive reward to accelerate the agent’s discovery of good trajectory. We also use
double Q-learning as proposed by Van Hasselt et al. (2016) with a “frozen” version of the online
network as target network Qtarget = Q(θi′), i

′ < i.

2.2 Multi-scale progressive control strategy

The global image context in which the agent evolves is downsampled to a multi-scale image pyramid
with increasing image resolution L1, L2, . . . , LN . The agent starts the search with both coarse
field-of-view and coarse control. Following the sampling scheme of the global image context, the
agent gains finer control over the parameter each time it transitions to a finer scale level Li+1. This
scheme goes on until the finest scale level, where the final region attended by the agent is taken
as estimated localization result. The stop action triggers the transition between subsequent scale
levels and acts as a stopping criterion at the finest scale level LN . At inference time, if the maximum
number of steps is exceeded or if the agent enters in a loop, the stop action is forcefully triggered.

3 Application to localize a standard box from Scout / Localizer images

MRI scans of the head are acquired along some specific brain anatomical regions to standardize
orientations of acquisitions in order to facilitate the reading and assessment of clinical follow-up
studies. We therefore propose to localize a standard box that covers the brain and is aligned along
specific orientations to show the applicability of our method. Ground-truth boxes have been annotated
based on specific brain anatomical structures. The orientation of the box is defined by the brain
midsagittal plane (MSP) and by two anatomical points determining the rotational alignment within
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Table 1: Absolute mean and maximal errors of the 30 test cases with respect to ground truth boxes.

Inter-rater Landmark-based Our approach

(4mm) (2mm)

α1(◦) 0.99(≤3.50) 0.92(≤3.45) 1.28(≤3.78) 0.92(≤3.23)
α2(◦) 1.04(≤4.71) 0.99(≤4.93) 1.20(≤4.46) 0.97(≤2.11)
β1(◦) 1.47(≤5.19) 2.00(≤6.86) 1.62(≤6.35) 1.39(≤5.86)

δR(mm) 1.32(≤3.54) 2.06(≤5.78) 2.65(≤7.54) 1.45(≤3.30)
δL(mm) 1.45(≤4.75) 1.89(≤5.03) 2.20(≤8.68) 1.83(≤4.95)
δA(mm) 2.00(≤3.36) 1.65(≤4.93) 2.46(≤6.07) 1.94(≤6.08)
δP (mm) 1.48(≤3.89) 1.86(≤9.62) 3.31(≤9.68) 1.65(≤5.68)
δI (mm) 3.33(≤3.61) 2.22(≤6.00) 3.12(≤11.5) 2.74(≤8.21)
δS(mm) 1.3(≤3.28) 2.13(≤5.74) 3.04(≤7.46) 2.16(≤6.31)

Figure 2: Four samples of the box evolution (blue) during inference on a challenging case.

the MSP. Given this orientation, the lower margin of the box is defined to intersect the center of
C1-vertebrae arches points. The other box extremities define an enclosing bounding box of the brain.
Following the annotation protocol, the box orientation is parametrized by three angles: α1 and α2

which control respectively the yaw and pitch of the MSP, and β1 which controls the inplane roll
around~i. The center position is parameterized by its cartesian coordinates C = (Cx, Cy, Cz) and the
scale by the width w, depth d and height h of the box.

In our experiments, the scale space is discretized into 4 levels: 16mm (L1), 8mm (L2), 4mm (L3)
and 2mm (L4). At inference, the very first box is set to cover the whole image at the coarsest scale
and is sequentially refined following the agent’s decisions. 500 annotated MRI scans of the head
region were used for training and 30 for testing. The 30 test cases were annotated twice by different
experts to compute the inter-rater variability. 15 additional challenging test cases with pathologies
(tumors or fluid swelling in brain tissue), in plane rotation of the head, thick cushion of the head rest,
or cropped top of the skull were selected to evaluate the robustness of the method.

Table 1 shows comparison between the proposed method, human performances (inter-rater variability)
and a previous landmark-based method. The landmark-based method uses the proposed algorithm
of Ghesu et al. (2017) to detect 14 landmarks carefully chosen after the box definition. Then, a box
is robustly fitted to minimize angular and positional errors with respect to the detected landmarks.
Better results are achieved for angles α1 and α2 than β1 because more landmarks are associated with
them. Also, a landmark only method performance degrades in the presence of larger orientation and
scale differences of the target, however for this test we included target variations that can be handled
by a landmark only approach. The proposed method however, does not rely on the previous detection
of specific points achieving performances in the range of the inter-observer variability for every
measure. The finer scale level is set to 2mm, meaning that our method achieves an average accuracy
of 1-2 voxels precision. Moreover, we did not observe any major failure over the 15 “difficult” test
cases, showing robustness of the method. The average detection time is 0.6s on GPU and if the search
is stopped at L3 scale-level (4mm) the detection time is 0.15s.

4 Conclusion

This paper proposes a novel approach, based on deep reinforcement learning, to sequentially search
for a target object inside 3D medical images. The method can robustly localize the target object and
achieves high speed and high accuracy results. The methodology can learn optimization strategies
eliminating the need for exhaustive search or for complex generic nonlinear optimization techniques.
The proposed object localization method can be applied to any given parametrization and imaging
modality type.
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Disclaimer: This feature is based on research, and is not commercially available. Due to regulatory
reasons, its future availability cannot be guaranteed.
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